Flexible palladium-based H2 sensor with fast response and low leakage detection by nanoimprint lithography.
نویسندگان
چکیده
Flexible palladium-based H2 sensors have a great potential in advanced sensing applications, as they offer advantages such as light weight, space conservation, and mechanical durability. Despite these advantages, the paucity of such sensors is due to the fact that they are difficult to fabricate while maintaining excellent sensing performance. Here, we demonstrate, using direct nanoimprint lithography of palladium, the fabrication of a flexible, durable, and fast responsive H2 sensor that is capable of detecting H2 gas concentration as low as 50 ppm. High resolution and high throughput patterning of palladium gratings over a 2 cm × 1 cm area on a rigid substrate was achieved by heat-treating nanoimprinted palladium benzyl mercaptide at 250 °C for 1 h. The flexible and robust H2 sensing device was fabricated by subsequent transfer nanoimprinting of these gratings into a polycarbonate film at its glass transition temperature. This technique produces flexible H2 sensors with improved durability, sensitivity, and response time in comparison to palladium thin films. At ambient pressure and temperature, the device showed a fast response time of 18 s at a H2 concentration of 3500 ppm. At 50 ppm concentration, the response time was found to be 57 s. The flexibility of the sensor does not appear to compromise its performance.
منابع مشابه
Specific Fast Response CH4 Gas Sensor Based on Metal Oxide, Tungsten Carbide /SnO2Core-Shell Modified Interdigitated Electrode
In this study, a specific CH4 sensor is fabricated based on interdigitated electrode that modified with core-shell of tungsten carbide/tin oxide (WC/SnO2) nanoparticles by wet chemical method in different percents of carbon and tungsten. The morphology of wet chemical-synthesized WC/SnO2 core-shell was evaluated by different methods such as patterned X-ray d...
متن کاملPrinted photonic elements: nanoimprinting and beyond
In order to manufacture large-scale photonic devices of various dimensions at a low cost, a number of patterning techniques have been developed. Nanoimprint lithography is among the most promising given its unique advantages, such as high resolution, fast processing speed, high throughput, compatibility with diverse materials, and low cost. This review covers various aspects of nanoimprint lith...
متن کاملLabel-Free Optical Detection of Fibrinogen in Visible Region Using Nanoimprint Lithography-Based Two-Dimensional Photonic Crystal
For the future medical diagnostics, high-sensitive, rapid, and cost effective biosensors to detect the biomarkers have been desired. In this study, the polymer-based two-dimensional photonic crystal (2DPC) was fabricated using nanoimprint lithography (NIL) for biosensing application. In addition, for biosensing application, label-free detection of fibrinogen which is a biomarker to diagnose the...
متن کاملLe GRADE de DOCTEUR en PHYSIQUE DE L’UNIVERSITÉ PARIS XI ORSAY
During the last decade, surface plasmon resonance (SPR) has become widely used to characterize a biological surface and to characterize binding events in the fields of chemistry and biochemistry. Since SPR sensors exhibit many merits such as real-time detection and high sensitivity, a wide range of applications as biosensors or chemical sensors is expected. In addition, research in this field h...
متن کاملMetal hierarchical patterning by direct nanoimprint lithography
Three-dimensional hierarchical patterning of metals is of paramount importance in diverse fields involving photonics, controlling surface wettability and wearable electronics. Conventionally, this type of structuring is tedious and usually involves layer-by-layer lithographic patterning. Here, we describe a simple process of direct nanoimprint lithography using palladium benzylthiolate, a versa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS applied materials & interfaces
دوره 5 15 شماره
صفحات -
تاریخ انتشار 2013